Solar Energy
Home Solar Solar General Solar Energy
Solar Energy
(1 vote, average 1.00 out of 5)
Bookmark and Share

Solar energy refers to the utilization of the radiant energy from the Sun. Solar power is used interchangeably with solar energy, but refers more specifically to the conversion of sunlight into electricity by photovoltaics, concentrating solar thermal devices, or by an experimental technology such as a solar chimney or solar pond.

Solar energy and shading are important considerations in building design. Thermal mass is used to conserve the heat that sunshine delivers to all buildings. Daylighting techniques optimize the use of light in buildings. Solar water heaters heat swimming pools and provide domestic hot water. In agriculture, greenhouses expand growing seasons and pumps powered by solar cells (known as photovoltaics) provide water for grazing animals. Evaporation ponds are used to harvest salt and clean waste streams of contaminants.

Solar distillation and disinfection techniques produce potable water for millions of people worldwide. Simple applications include clotheslines and solar cookers which concentrate sunlight for cooking, drying and pasteurization. More sophisticated technologies concentrate sunlight for high-temperature material testing, metal smelting and industrial chemical production. A range of experimental solar vehicles provide ground, air and sea transportation.

Energy from the Sun

The Earth receives 174 petawatts (PW) of incoming solar radiation (insolation) at the upper atmosphere. Approximately 30% is reflected back to space while the rest is absorbed by clouds, oceans and land masses. The spectrum of solar light at the Earth''s surface is mostly spread across the visible and near-infrared ranges with a small part in the near-ultraviolet.

The absorbed solar light heats the land surface, oceans and atmosphere. The warm air containing evaporated water from the oceans rises, driving atmospheric circulation or convection. When this air reaches a high altitude, where the temperature is low, water vapor condenses into clouds, which rain onto the earth''s surface, completing the water cycle. The latent heat of water condensation amplifies convection, producing atmospheric phenomena such as cyclones and anti-cyclones. Wind is a manifestation of the atmospheric circulation driven by solar energy. Sunlight absorbed by the oceans and land masses keeps the surface at an average temperature of 14 °C. The conversion of solar energy into chemical energy via photosynthesis produces food, wood and the biomass from which fossil fuels are derived.

Solar radiation along with secondary solar resources such as wind and wave power, hydroelectricity and biomass account for over 99.9% of the available flow of renewable energy on Earth. The total solar energy absorbed by Earth''s atmosphere, oceans and land masses is approximately 3,850 zettajoules (ZJ) per year. In 2002, this was more energy in one hour than the world used in one year. Photosynthesis captures approximately 3 ZJ per year in biomass. The amount of solar energy reaching the surface of the planet is so vast that in one year it is about twice as much as will ever be obtained from all of the Earth''s non-renewable resources of coal, oil, natural gas, and mined uranium combined.